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Ratio in Five Diverse Crop Plants
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W. Barbour

USDA–Agricultural Research Service, Morris, Minnesota, USA

Abstract: Multivariate relationships in and statistical moments of eight

biochemical constituents and their impact on estimating carbon/nitrogen (C/N)

ratio in alfalfa, corn, soybean, cuphea, and switchgrass residues indicate that (1)

equal portions of variation in C/N were explained by differences among crops and

among organs; however, the largest variations in N and C were explained by

differences among crops and among organs within crops, respectively; (2)

variation in N, but not in C or N + C, content explained the greatest variance in

C/N ratios; (3) biochemically, stems were closer to roots than to leaves; hence the

large portion of variation in C/N ratio in roots explained by variation in

biochemical constituents in stems and leaves (R2 5 61.0%) and in stems only (R2

5 58.0%); and (4) statistical moments, other than mean values of biochemical

constituents, significantly impacted C/N ratio estimates and the reliability of these

estimates, both of which were positively correlated (r 5 0.64, p , 0.001).
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INTRODUCTION

Crop residues vary widely in their chemical composition (Poorter and

Villar 1997) and constitute a major source of nutrient inputs to soils in

small- (Njunie, Wager, and Luna-Orea 2004) and large-scale (Karlen

et al. 1994; Liebig et al. 2002) cropping systems. The quality of these

residues regulates their decomposition and the availability of nutrients

for subsequent crops in crop rotations. The quality of the crop residue

is defined by the organic nitrogen (N) content of the residue and by

the carbon (C)/N ratio, which in turn determines the rate of

decomposition of the residue and the C/N ratio of microbial biomass

(Abiven et al. 2005). Many factors, including the form of the C in

plant cells as an energy source, the concentration of other nutrients,

and the composition of various secondary compounds (Wang et al.

2004) interact with and impact C/N ratio. In the soil medium, the N

dynamics are linked to the C dynamics through the C/N ratio of the

various biochemical pools (Hadas, Parkin, and Stahl 1998; Nicolardot,

Recous, and Mary 2001).

To predict the fertilizing potential of crop residues, insight into the

interrelationships among their biochemical composition and C/N ratio is

required (Grant, Peterson, and Campbell 2002). The C/N ratio is

frequently used (Cortez et al. 2007) as a quality index of crop residues

and their decomposition without taking into consideration the large

within-crop variation and co-variation of biochemical constituents.

However, this simple index is often misinterpreted (Nicolardot, Recous,

and Mary 2001; Flavel and Murphy 2006) as a causal factor, but the

gross biochemical composition and the spatial arrangement of constitu-

ents in plant tissues are more likely to be the determining factors (Magid,

Luxhøi, and Lysede 2004; Jensen et al. 2005).

The literature is replete with arguments (e.g., Quemada and Cabrera

1995; Ruffo and Bollero 2003; Jensen et al. 2005) about the efficacy of the

C/N ratio as an indicator of N mineralization in crop residues and

whether there is a single critical C/N ratio at which N is released and

becomes available for plant use. The C/N ratio of crop residues depends

on a number of factors including the plant species, crop genotype, length

of the growing season, soil fertility, and environmental conditions

(Quemada 2004; Trinsoutrot et al. 2000). For example, C/N ratio,

cellulose, and lignin increase with plant age, whereas soluble carbohy-

drates decrease (Nicolardot, Recous, and Mary 2001). Consequently,

younger crop residues have smaller C/N ratios and decompose faster than

mature residues.

The biochemical composition (i.e., structural and nonstructural

carbohydrates) of crop residues is an important factor in determining

C/N ratio and, consequently, the rate of residue decomposition (Hadas

Determinants and Prediction of C/N Ratio 2689
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et al. 2004). Large variability exists in biochemical composition between

plants of the same species and between different organs of the same plant,

depending on growth conditions (Poorter and Villar 1997) and on

morphology and physical characteristics of the plant tissues (Abiven and

Recous 2006). Crop plants and plant parts with different chemical

composition would be expected to have different C/N ratios and to show

different mineralization kinetics (Quemada and Cabrera 1995). We

reported on the allocation, associations, and ratios of fixed-C biochem-

icals in roots, stems, and leaves of two traditional and three alternative

crops as candidates in more diverse crop rotations than the current corn–

soybean rotation (Johnson, Barbour, and Weyers 2007). Since the

residues of these crops are basically composed of similar biochemical

constituents but differ in their proportions and level of variation, we

hypothesized that statistical moments of biochemical constituents, other

than mean values (e.g., minimum, maximum, variance, etc.) can impact

C/N ratio prediction when used in multivariate models that account for

multicolinearity. The objectives of this study were to (1) identify sources

of variation in C/N and quantify their impact on its estimation, (2) build

calibration and validation models of C/N ratio in two traditional (corn

and soybean) and three alternative (alfalfa, cuphea, and switchgrass)

crops and their organs with large variation in biochemical constituents,

and (3) identify which statistical moments of these biochemical

constituents have the largest impact on predicting C/N ratio.

MATERIALS AND METHODS

The data used to build partial least squares (PLS) calibration and validation

models and to discriminate among leaves, stems, and roots of two

traditional [corn (Zea mays L.), soybean (Glycine max L. Merr.)], and three

alternative [alfalfa (Medicago sativa L.), cuphea germplasm selection

(Cuphea lanceolata 6 Cuphea viscosissima), and switchgrass (Panicum

virgatum L.)] crops were derived from biochemical constituents of their

leaves, stems, and roots (Johnson, Barbour, and Weyers 2007). Each PLS

model was based on four estimates of eight biochemical constituents in

leaves, stems, and roots of mature plants sampled from a field experiment.

A data matrix of raw data on a total of 60 samples and eight

biochemical constituents (i.e., glucose, fructose, sucrose, starch, cellulose,

hemicellulose, acid-insoluble lignin, and acid-soluble lignin), in addition

to C, N, and C/N ratio, was used to carry out statistical analyses and to

generate a new matrix comprised of mean, minimum, maximum, range,

standard deviation, variance, skewness, and kurtosis of each biochemical

constituent. The new data matrix was used in artificial neural network

analyses (ANN) and sensitivity analyses as described.
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Statistical Analyses

Total variance in C, N, and C/N ratio explained by differences among crops,

among organs, and among organs within crops, using an orthogonal sum of

squares method in a general linear model (GLM), was calculated and tested

for significance. A whole model R2 was calculated for each variable and was

partitioned according to its sources of variation (Hair et al. 1998).

C/N Prediction and Validation Models

The partial least squares (PLS) regression option in the nonlinear

iterative partial least squares (NIPALS) algorithm (Esbensen 2005) was

used on the raw data to construct a set of components that account for as

much variation as possible while modeling the biochemical constituents’

data. The PLS is an extension of multiple linear regression in the form Y

5 XB + E, where Y is an ‘‘n’’ cases by ‘‘m’’ variables response matrix, X

is an ‘‘n’’ cases by ‘‘p’’ variables predictor matrix, B is a ‘‘p 6 m’’

regression coefficient (b) matrix, and E is an error term for the model that
has the same dimensions as Y. The PLS regression employs rotations to

overcome the problem of high-dimensional, correlated data and rotates

both the independent and dependent variables to maximize predictive

power. The PLS1 option in the Unscrambler software (v 9.7, Camo ASA,

2007) was used for creating models to predict C/N ratio as a function of

C, N, or C + N and as a function of eight biochemical constituents in the

five crops and the three plant organs. The models developed in this

analysis were cross-validated by successively leaving out data one at a
time, and a model was built using the remaining data points; then the

model created was used to predict C/N ratio. The root mean squares

error (RMSE) was used to compare the prediction and validation errors

of different PLS regression models and was based on the differences

between the predicted and actual values, after all the samples have been

held out once. RMSE was calculated as

RMSE~

ffiffiffiffiffiffiffiffi

X

n

i~1

s

ŷi{yi

� �2
.

n

where ŷi and yi are predicted and measured Y and n is the number of samples.

PLS was implemented by the Unscrambler v 9.7 (Camo ASA, 2007) software.

Variation between Plant Organs

Canonical discriminant analysis (CDA), a combination of principal

components and canonical correlation analyses, was used on the raw data
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to derive canonical variables that contain the largest possible multiple

correlation with each plant organ (i.e., leaves, stems, and roots) and that

best summarize between-organs variation. The differentiation of leaves,

stems, and roots was based on the correlation among the dependent

variables (i.e., biochemical constituents) with the independent variable

(i.e., plant organs). The differences between mean values of the canonical

variables (i.e., group centroids) is the squared Mahalanobis distance D2

and is calculated as

D2~ X 1{X 2

� �

S{1 X 1{X 2

� �

where S21 is the inverse of the pooled sample variance–covariance matrix

and X21 and X22 are the respective vectors of measurements of organs 1 and

2 (e.g., leaves and stems). The R2 values in CDA were used to identify the

traits that most significantly contributed to the discrimination among

plant organs (StatSoft Inc. 2007b).

Sensitivity Analyses of C/N Ratio

The impact of statistical moments of biochemical constituents on C/N

ratio and RMSE estimates was studied using feed-forward, back-

propagation artificial neural network (ANN) module in Statistica 8.0

(StatSoft Inc. 2007a) using a data matrix composed of all statistical

moments described (see Materials and Methods). Because of data size

limitations (Statsoft Inc. 2007b), ANN analysis was performed on the

whole data set for all crops combined. The algorithm is based on

supervised learning; the learning phase consists of adjusting the weights

of the network connections by feeding the learning data set many times.

After training with a learning data set, the network was fed with a

validation data set, and the proportion of correct predictions was used to

assess the reliability of the network model. ANN models were subjected

to sensitivity analysis to evaluate the relative importance of each

independent variable in explaining variation in C/N ratio and in

RMSE estimates. In this analysis, each predictor was treated in turn as

if it was not available in the ANN model, and the average value of that

predictor was used. A sensitivity ratio was calculated by dividing the total

ANN error when the predictor was treated as ‘‘not available’’ by the total

ANN error when the actual value of the predictor was used. If the

sensitivity ratio is .1.0, then the predictor made an important

contribution to C/N ratio; the greater the ratio, the more important the

predictor. Additionally, we calculated the correlation coefficient (r value),

a ratio between the standard deviation (SD ratio) of original and model

data, the absolute error mean, and RMSE; higher r values and lower SD

ratio, absolute error mean, and RMSE values of the test sample are

2692 A. A. Jaradat et al.
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indicators of better model performance (StatSoft Inc. 2007b). Sensitivity

analyses were performed by generating response curves for each predictor

to study its impact on C/N ratio or RMSE, while all other predictors were

set at their mean value.

RESULTS

Sources of Variation in C/N Ratio

Total variances in C, N, and C/N ratio were partitioned into their

components according to three sources of variation: among crops, among

organs, and among organs within crops (Table 1). These sources of
variation explained 91.0, 97.0, and 87.0% of total variance in C, N, and

C/N, respectively, as indicated by the adjusted R2 values. When total

variance for each dependent variable was tested for significance, all three

sources of variation accounted for significant portions of variances in N

and C/N ratio, whereas only differences among organs within crops

accounted for a large and significant (70.9%) portion of variance in C.

Variation between Plant Organs

Crops and organs differed significantly in their C/N ratio (overall mean

5 48.0, CV 44.6%; Table 2). Alfalfa and cuphea had the smallest and

switchgrass had the largest C/N ratios, whereas leaves had the smallest

C/N ratio, followed by roots and stems. The whole-model R2 values of
the validation models were smaller, and the RMSE estimates were larger,

than the values of their respective calibration models. Coefficients of the

calibration and validation models in the PLS regression analyses to

predict C/N ratios based on C, N, or C + N contents exhibited large

differences between crops and between organs. Strong relationships were

Table 1. Variance explained (adjusted R2) and percentage variance in N, C, and

C/N ratio accounted for by differences among crops (alfalfa, corn, cuphea,

soybean, and switchgrass), among organs (leaves, stems, and roots), and among

organs within crops.

Variable Adjusted R2 Variance (%)

Crops Organs Organ (crops)

Carbon 91.0** 19.7 1.0 70.9**

Nitrogen 97.0** 53.3** 33.7** 10.3**

C/N ratio 87.0** 35.0** 35.0** 14.4**

**Significant at p , 0.001.

Determinants and Prediction of C/N Ratio 2693

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
S
D
A
 
N
a
t
l
 
A
g
r
i
c
u
l
t
u
l
 
L
i
b
]
 
A
t
:
 
1
8
:
2
6
 
9
 
D
e
c
e
m
b
e
r
 
2
0
0
9



Table 2. Coefficients and test statistics of partial least squares (PLS) regression models to predict C/N ratio in five (alfalfa, corn, cuphea,

soybean, and switchgrass) crops and their organs (stems, leaves, and roots) using N, C, or N + C percentages as independent variables (X)

Crops/organs C/N ratio X Calibration model Validation model

Intercept Slope R2 value RMSE Intercept Slope R2 value RMSE

All 48.0 N 21.8 0.55 54.0 22.9 21.4 0.54 52.0 24.1

C 40.5 0.16 16.0 31.2 41.0 0.14 13.0 32.3

N + C 26.0 22.0

Crops

Alfalfa 17.2da N 0.33 0.98 98.0 0.7 0.3 0.98 97.0 0.8

C 12.5 0.27 27.0 4.2 14.7 0.17 2.0 5.3

N + C 93.0 92.0

Corn 49.6bc N 12.3 0.75 75.0 11.6 13.9 0.69 67.0 14.4

C 28.7 0.42 42.0 17.7 31.8 0.33 32.0 20.9

N + C 43.0 33.0

Cuphea 31.4cd N 2.9 0.90 90.0 7.3 2.1 0.91 85.0 5.9

C 10.9 0.63 63.0 8.4 10.0 0.63 54.0 10.4

N + C 68.0 58.0

Soybean 66.2ab N 9.5 0.86 86.0 12.9 8.9 0.85 82.0 14.9

C 21.4 0.68 68.0 18.7 25.1 0.62 63.0 21.8

N + C 71.0 76.0

Switchgrass 75.8a N 13.9 0.82 82.0 16.4 12.0 0.82 73.0 21.8

C 71.6 0.05 5.0 37.0 85.0 20.09 0.0 44.0

N + C 45.0 31.0
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Crops/organs C/N ratio X Calibration model Validation model

Intercept Slope R2 value RMSE Intercept Slope R2 value RMSE

Organs

Stems 74.5ab N 17.5 0.77 77.0 18.7 17.1 0.76 75.0 20.5

C 0.0 0.0

N + C 64.0 60.0

Leaves 24.4c N 5.5 0.78 78.0 5.32 5.4 0.77 75.0 5.9

C 0.0 0.0

N + C 71.0 59.0

Roots 45.3b N 14.9 0.67 67.0 13.2 15.6 0.65 62.0 14.8

C 0.0 0.0

N + C 19.0 12.0

aC/N ratio means of crops followed by the same letter do not differ significantly at the 5% level of probability (Tukey’s HSD).
bC/N ratio means of organs followed by the same letter do not differ significantly at the 5% level of probability (Tukey’s HSD).

Table 2. Continued
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found between the intercept and RMSE estimates in the calibration (r 5

0.91; p , 0.01) and validation (r 5 0.89; p , 0.01) models.

C/N Prediction and Validation Models

Variation in N, but not in C or N + C, content explained the greatest

variance (R2 . 73.0 for crops and .62.0 for organs) in C/N ratios in

all crops combined, in individual crops, and in crop organs (Table 2).

The reliability of estimation when N content was used as a predictor

was large for alfalfa, cuphea, and soybean and moderate for corn and

switchgrass. The R2 values in the validation models were 97.0, 67.0,

85.0, 82.0, and 73.0 for alfalfa, corn, cuphea, soybean, and switch-

grass, respectively, whereas the respective RMSE estimates were 0.8,

14.4, 5.9, 14.9, and 21.8. Nevertheless, R2 values of validation models

for stems (75.0), leaves (75.0), and roots (62.0) were very close to their

respective estimates in the calibration models (77.0, 78.0, and 67.0,

respectively).

Variation in C content explained no (R2 5 2.0, in alfalfa, 0.0 in

switchgrass, stems, leaves, and roots), small (R2 5 32.0 in corn), or

moderate (R2 5 54.0 in cuphea and 63.0 in soybean) portions of total

variance in C/N ratios; however, when N + C values were used as

predictors, the R2 values were intermediate between those predicted by N

or C only. In addition, RMSE estimates for the C-based validation

models were much larger than the respective values for N-based

validation models.

Coefficients of the calibration and validation models in the PLS

regression analyses to predict C/N ratios in all five crops and their organs

based on their biochemical constituents (Table 3) exhibited large

differences between crops and between organs. When compared with

the N-based PLS models, slightly smaller, albeit significant, relationships

were found between the intercept and RMSE in the calibration (r 5 0.77;

p , 0.05) and validation (r 5 0.75; p , 0.05) models when all

biochemical constituents were used as predictors. Reliability of C/N ratio

estimation, as quantified by the validation R2 values, was large for alfalfa

(85.0) and cuphea (82.0), intermediate for corn (61.0), and small for

soybean (52.0) and switchgrass (46.0). Calibration and validation R2

values were similar in magnitude when C/N ratios in leaves, stems, and

roots were estimated using all biochemical constituents. However, when

biochemical constituents or C/N ratios in stems and leaves were used to

estimate C/N in roots, the R2 values [roots (1)–roots (6); Table 3] were

highly variable and dropped from 61.0 (when biochemicals in all three

organs were used as predictors) to 20.0 (when only biochemicals in leaves

were used).

2696 A. A. Jaradat et al.
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Table 3. Coefficients and test statistics of partial least square (PLS) regression models to predict C/N in five (alfalfa, corn, cuphea, soybean

and switchgrass) crops and their organs (stems, leaves and roots) using eight (glucose, fructose, sucrose, starch, cellulose, hemicellulose, acid

soluble lignin, and acid insoluble lignin) biochemical constituents

Crop/organ Calibration model Validation model

Intercept Slope R2 value RMSE Intercept Slope R2 value RMSE

All crops 20.4 0.55 55.0 19.0 22.3 0.47 52.0 20.9

Alfalfa 1.93 0.88 89.0 1.66 2.64 0.84 85.0 1.87

Corn 12.3 0.75 75.0 23.2 15.6 0.68 61.0 29.3

Cuphea 1.06 0.87 88.0 1.61 1.94 0.82 82.0 2.10

Soybean 25.7 0.66 62.0 20.2 32.3 0.57 52.0 23.0

Switchgrass 28.9 0.62 59.0 23.9 35.0 0.49 46.0 29.0

Leaves 9.96 0.59 59.0 7.7 11.1 0.55 49.0 8.0

Stems 30.8 0.54 54.0 20.3 31.8 0.53 54.0 21.0

Roots 14.1 0.68 68.0 12.6 18.4 0.59 54.0 16.4

Roots (1)a 13.3 0.70 71.0 16.6 14.9 0.66 61.0 19.1

Roots (2) 13.2 0.71 71.0 17.4 15.0 0.66 61.0 19.6

Roots (3) 14.2 0.69 78.0 16.7 16.0 0.63 58.0 19.2

Roots (4) 30.1 0.33 33.0 18.4 33.7 0.25 20.0 20.5

Roots (5) 23.6 0.48 57.0 16.3 26.3 0.43 34.0 18.8

Roots (6) 24.4 0.46 46.0 16.6 27.1 0.42 28.0 19.2

aIndependent variables are biochemical constituents: (1) in leaves, stems, and roots; (2) in stems and leaves; (3) in stems; (4) in leaves; (5)

only C/N ratio in stems and leaves; and (6) only C/N ratio in stems.
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Six calibration and validation models were constructed to estimate

C/N ratio in roots. A relatively better prediction of C/N in the roots was

achieved when biochemical constituents in all organs (R2 5 61.0), in

stems and leaves (R2 5 61.0), or in roots (R2 5 54.0) were used as

predictors, as compared to predictions using the remaining models

(Table 3). Biochemical constituents in leaves contributed very little to

predicting C/N ratio in roots, whether alone (R2 5 20.0), or in

combination with stems (R2 5 61.0), as compared to using biochemicals

in stems alone (R2 5 58.0). However, C/N ratios in both stems and

leaves, and in stems alone, explained only 34.0 and 28.0% of variation in

C/N ratio in the roots, respectively.

Associations between individual biochemicals and PLSCs (r values)

ranged from 20.5 to +0.5 on PLSC1 and from 20.6 to +0.8 on PLSC2

(Figures 1–5). The PLS regression analyses partitioned the eight biochem-

ical constituents along the first two components and explained large

portions (R2 . 0.78) of total variances in C/N ratios in each crop. The

CDA resulted in full separation of leaves, stems, and roots of each crop.

Stems and roots were invariably separated from leaves on CAN1, with

large (.82.0) R2 values, whereas stems and roots were separated from each

other along CAN2 but with smaller (4.0–18.0) R2 values. In addition, all

D2 values of leaves, stems, and roots of each crop, based on biochemical

constituents, were significant (largest p , 0.008). Correlation coefficients

between single biochemical constituents and the first two PLSCs and

covariations (i.e., r values on positive and negative sides of PLSC1 and

PLSC2) among these constituents differed among crops and contributed to

full discrimination between plant organs within each crop.

In alfalfa, a C4 perennial forage legume crop, the first two PLSCs

accounted for 77% of total variance in C/N ratio (Figure 1A), whereas

CAN1 and CAN2 explained 83 and 17% of total variance, respectively,

and fully discriminated among its stems, roots, and leaves (Figure 1B). The

PLSCs separated the eight biochemical constituents into three groups. The

first (glucose, fructose, acid-insoluble lignin, and cellulose), second

(hemicellulose, sucrose, and starch), and third (acid-soluble lignin) were

associated with stems, roots, and leaves, respectively. Monosaccharides

were totally separated from starch and sucrose with large covariances on

PLSC1, whereas cellulose and hemicellulose were closely associated on

PLSC1 with a small covariance. Both acid-soluble and acid-insoluble

lignin had significant R2 values in the discriminant analysis between organs

and were associated negatively and positively on PLSC1, respectively.

Loadings of biochemical constituents on PLSC1 and PLSC2 and their R2

values, derived from CDA in Figure 1A, suggest that larger values of acid-

insoluble lignin, starch, sucrose, and glucose, in decreasing order, and

smaller values of acid-insoluble lignin, contributed to full discrimination of

alfalfa stems and roots from its leaves. Similarly, biochemicals with
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significant R2 values and with either positive or negative loadings on

PLSC2 contributed to full discrimination between stems and roots. Only

three biochemicals (i.e., cellulose, hemicellulose, and fructose, with

nonsignificant R2 values) did not contribute to the multivariate

discrimination among alfalfa organs. Stems and roots were separated by

the smallest distance (D2 5 200.8; p , 0.001), followed by an intermediate

distance between stems and leaves (D2 5 239.3; p , 0.001), and then by the

largest distance (D2 5 350.5; p , 0.001) between leaves and stems.

In corn (Figure 2), an annual C4 cereal crop, PLS analyses resulted in

a slightly different multivariate display of the association between

biochemical constituents on the first two PLSCs, the proportion of

explained variance in its C/N ratio, and discrimination among its organs.

The first two PLSCs accounted for 76% of total variance in C/N ratio

(Figure 2A), with sucrose, cellulose, and hemicellulose, in decreasing

order, significantly contributing toward full discrimination among leaves,

stems, and roots; the R2 value for starch (7.0) was not significant. More

than half (R2 5 55%) of total variance in biochemical constituents was

accounted for by PLSC1, with positive loadings of all biochemical

constituents except acid-soluble lignin. PLSC2 accounted for 21% of the

Figure 1. Loadings, significant R2 values of biochemical constituents, and

amount of variation in C/N ratio accounted for by the first two partial least

squares (PLS) components (A); and discrimination, squared Mahalanobis

distances (D2), and mean separation among C/N ratio estimates in leaves, stems,

and roots of alfalfa based on their biochemical constituents (B).
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variance in biochemical constituents and contributed to full discrimina-

tion between roots and other organs. The significant R2 values associated

with cellulose, hemicellulose, and sucrose were small in magnitude (12.0–

18.0). Soluble sugars were clustered together with small covariation on

PLSC1, whereas most covariation was displayed by acid-soluble and

acid-insoluble lignin. The D2 distances (Figure 2B) between corn organs

were all significant, with leaves and roots being separated by the smallest

distance (D2 5 119.5; p , 0.006), followed by a medium distance

separating stems and roots (D2 5 317.6; p , 0.001), and then by the

largest distance (D2 5 682.6; p , 0.001) separating stems and leaves.

Cuphea (Figure 3A) represents a unique case of a semidomesticated

C3 annual plant; it is being developed as a potential oilseed crop with

large lipid content in its seed and, to some extent, in its leaves. The first

two PLSCs accounted for 53 and 15% of total variance in C/N ratio,

respectively (Figure 3A). Most biochemical constituents had large

loadings on PLSC1, except sucrose and hemicellulose. Acid-soluble and

acid-insoluble lignin, followed by starch and cellulose, with large and

significant (p , 0.05) R2 values of 98.0, 97.0, 77.0, and 52.0, respectively,

were the most discriminating biochemical constituents among cuphea

Figure 2. Loadings, significant R2 values of biochemical constituents, and

amount of variation in C/N ratio accounted for by the first two PLS components

(A); and discrimination, squared Mahalanobis distances (D2), and mean

separation among C/N ratio estimates in leaves, stems, and roots of corn based

on their biochemical constituents (B).

2700 A. A. Jaradat et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
S
D
A
 
N
a
t
l
 
A
g
r
i
c
u
l
t
u
l
 
L
i
b
]
 
A
t
:
 
1
8
:
2
6
 
9
 
D
e
c
e
m
b
e
r
 
2
0
0
9



organs, specifically among its leaves and both of its stems and roots.

Covariation was large between acid-soluble and acid-insoluble lignin,

followed by covariation between cellulose and hemicellulose. Most

variation among cuphea organs (R2 5 96.0) was accounted for by CAN1

(Figure 3B) and was due to differences among plant organs in

concentrations of biochemical constituents with large positive and

negative loadings on PLSC1. CAN1 totally separated leaves from stems

and roots of cuphea, whereas CAN2 separated roots from both stems and

leaves, albeit with very small R2 (4.0) value (Figure 3B). The D2

separating stems and roots (D2 5 286.8; p , 0.001) and the one

separating roots and leaves (D2 5 272.0; p , 0.001) were much smaller

than the distance separating leaves and stems (D2 5 1015.9; p , 0.001).

Almost equal proportions of C/N ratio variance were accounted for

by PLSC1 (36.0) and PLSC2 (32.0) in soybean (Figure 4A), an annual C3

traditional legume crop. Soluble sugars and hemicellulose were the only

biochemical constituents that did not contribute significantly to the

discrimination between soybean leaves, stems, and roots. Cellulose and

starch had the largest R2 values (97.0), followed, in decreasing order, by

acid-insoluble lignin (74.0) and acid-soluble lignin (45.0). Soluble sugars

Figure 3. Loadings, significant R2 values of biochemical constituents, and

amount of variation in C/N ratio accounted for by the first two PLS components

(A); and discrimination, squared Mahalanobis distances (D2), and mean

separation among C/N ratio estimates in leaves, stems, and roots of cuphea

based on their biochemical constituents (B).
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and starch, similar to cellulose and hemicellulose, had small covariances.

Acid-soluble and acid-insoluble lignin had large covariances as a result of

large opposite loadings on both PLSCs. The CAN1 accounted for 82.0%

of total variance between soybean organs and separated leaves from

stems and roots based on differences in cellulose and acid insoluble

lignin, on one hand, and starch and acid soluble lignin, on the other. The

separation between roots and each of stems and leaves on CAN2 was

smaller in magnitude (R2 5 18.0). The D2 values separating soybean

organs from each other were the largest as compared to other crops

(Figure 4B). The smallest distance (D2 5 580.9; p , 0.003) separated

leaves from stems, the intermediate distance (D2 5 943.4; p , 0.002)

separated stems from roots, and the largest distance (D2 5 1552.0; p ,

0.008) separated leaves from roots.

Finally, in switchgrass, a C4 perennial biomass crop, PLSC1 and

PLSC2 explained 44.0 and 28.0% of total variance in C/N ratio and

separated acid-soluble lignin and acid-insoluble lignin from the remaining

biochemical constituents, respectively (Figure 5A). Most biochemical

constituents, except sucrose and cellulose, contributed to the explained

variance in C/N ratio on PLSC1, whereas sucrose and acid-insoluble lignin

Figure 4. Loadings, significant R2 values of biochemical constituents, and

amount of variation in C/N ratio accounted for by the first two PLS components

(A); and discrimination, squared Mahalanobis distances (D2), and mean

separation among C/N ratio estimates in leaves, stems, and roots of soybean

based on their biochemical constituents (B).
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explained most of the variance in C/N ratio on PLSC2. Four biochemical

constituents (i.e., cellulose, glucose, acid-insoluble lignin, and starch, in

decreasing order) contributed significantly (R2 . 79.0; p , 0.05) to the

discrimination among leaves, stems, and roots of switchgrass. Starch

and soluble sugars were dispersed along PLSC2, whereas cellulose and

hemicellulose had a small covariance as compared to acid-soluble and acid-

insoluble lignin. CAN1 and CAN2 explained 82.0 and 18.0% of total

variance among stems, roots, and leaves, respectively (Figure 5B);

however, the D2 values separating these plant organs were among the

smallest in this study. The smallest distance (D2 5 107.3; p , 0.001)

separated leaves from roots on both PLSCs, the intermediate distance (D2

5 256.4; p , 0.001) separated stems from leaves on PLSC1, and the largest

distance (D2 5 390.4; p , 0.001) separated stems from roots on PLSC2.

Reliability of C/N Ratio and RMSE Estimation

A validation PLS model for all crops and their organs revealed a positive

and significant (r 5 0.64; p , 0.001) relationship between C/N ratio and

Figure 5. Loadings, significant R2 values of biochemical constituents, and

amount of variation in C/N ratio accounted for by the first two PLS components

(A); and discrimination, squared Mahalanobis distances (D2), and mean

separation among C/N ratio estimates in leaves, stems, and roots of switchgrass

based on their biochemical constituents (B).
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RMSE estimates. Two crops (alfalfa and cuphea) and two plant organs

(leaves and roots) had below-average values of both. Switchgrass had the

largest C/N ratio but below-average RMSE, whereas corn, soybean, and

stems had above-average values for both. Reliability of ANN analysis was

tested by comparing several statistics of the training and testing samples

(Table 4). Mean C/N ratio was smaller for the testing sample (49.3) as

compared to the training sample (52.5). However, all other statistics of the

testing sample were slightly larger than those for the training sample.

Consequently the R2 for the testing sample (68.0) was smaller than the

respective value for the training sample (92.0). A similar trend was observed

in the RMSE statistics for training and testing samples, except that SD of

the testing sample was smaller than the one for the training sample.

Sensitivity Analyses of C/N Ratio and RMSE Estimates

Sensitivity analyses identified six independent variables out of the 64

statistics calculated for the eight biochemical constituents as important in

determining C/N ratio (Figure 6); these were maximum values of cellulose,

starch, acid-insoluble lignin, hemicellulose, and glucose and minimum values

of starch. The relationships between these variables and C/N ratio were linear

positive (maximum cellulose, maximum hemicellulose, and minimum

starch), nonlinear positive (maximum glucose), and linear negative

(maximum acid-insoluble lignin). The ratio values derived from the ANN

sensitivity analyses indicated that maximum cellulose and maximum glucose

had the most and least impact on C/N ratio estimates, respectively. Similarly,

sensitivity analyses identified six independent variables out of the 64 statistics

calculated for the eight biochemical constituents as important in determining

RMSE (Figure 7); these were maximum values of glucose and acid-soluble

lignin; SD values of cellulose, acid-soluble, and acid-insoluble lignin; and

mean values of starch contents. The relationships of these variables and

Table 4. Neural network test statistics for C/N ratio and RMSE estimates of

training and testing samples derived from biochemical analysis of leaves, stems,

and roots of five (alfalfa, corn, cuphea, soybean, and switchgrass) crops in a 500-

day decomposition study.

Dependent

variable

Sample Neural network statistics

Mean SD SD ratio Absolute

error mean

R2 RMSE

C/N Training 52.5 21.8 0.012 0.12 92.0 6.2

Testing 49.3 24.8 0.017 0.16 68.0 10.3

RMSE Training 15.5 11.4 0.003 0.03 88.0

Testing 14.0 7.9 0.004 0.05 64.0
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RMSE were linear positive (maximum glucose and cellulose SD), nonlinear

positive (acid-insoluble lignin SD), linear negative (acid-soluble lignin SD),

and nonlinear negative (mean starch and maximum acid-soluble lignin). The

ratios derived from the ANN sensitivity analyses indicated that maximum

glucose and SD of acid-soluble lignin had the largest and smallest impact on

RMSE estimates, respectively.

DISCUSSION

The long-term objective of studying the composition and decomposition

of this diverse set of crops is to model optimal crop sequences for nutrient

Figure 6. Sensitivity analyses of the most important biochemical constituents in

predicting C/N ratio in leaves, stems, and roots of five (alfalfa, corn, cuphea,

soybean, and switchgrass) crops.
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cycling and for the production of biomass for bioenergy. The five crops

used in this study were selected to encompass as wide a quality range as

possible with respect to C/N ratio (average 17.2–75.8) and distribution of

C and N in biochemical fractions of their leaves, stems, and roots

(Johnson, Barbour, and Weyers 2007), especially when compared with

C/N ratios and biochemical fractions of 14 diverse crops (average 9.4–

46.5; Chaves et al. 2004), or plant communities sampled from natural

habitats (average 30.5–71.14; Cortez et al. 2007).

The small portion (14.4%) of total variance in C/N ratio due to

organs within crops as compared to the relatively larger portions (35.0%)

due to each of crops and organs provides a guideline as to whether

residues of single or multiple crops should be used for nutrient cycling or

Figure 7. Sensitivity analyses of the most important biochemical constituents in

predicting RMSE of C/N ratio in leaves, stems, and roots of five (alfalfa, corn,

cuphea, soybean, and switchgrass) crops.
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as a source of biomass for bioenergy production. Plant material with

large C/N ratio (e.g., switchgrass) is considered to be energy-rich material

(Cortez et al. 2007), whereas plant material with small C/N ratio (e.g.,

alfalfa and cuphea) may contribute to nutrient cycling and soil fertility

(Chaves et al. 2004).

Simple PLS models were developed to predict and validate C/N ratio

in crops and organs with different levels of goodness of fit and accuracy

(i.e., R2 and RMSE, respectively). Whether based on variation in N but

not C or N + C (Table 2) or on variation in biochemical constituents

(Table 3), C/N models reflect sizable differences in N content and

biochemical composition among crops and among organs. By definition,

C is positively and N is negatively correlated with C/N ratio. Variation in

C concentration in plants generally ranges between 400 and 500 mg g21,

whereas N may vary more than fivefold (Jensen et al. 2005);

consequently, C/N ratio may vary more than 20-fold. On average, N

varied from 4.36 to 44.0 and C from 343 to 468 g kg21 plant material in

these crops (Johnson, Barbour, and Weyers 2007). Hence, the strong

relationship between N content and biochemical composition of crop

residues, which itself is usually related to the nature, age, and growing

conditions of the crops (Nicolardot, Recous, and Mary 2001; Cortez et al.

2007) and that C/N ratio is the best predictor of potential N that can be

mineralized from a crop residue (Chaves et al. 2004). Predictions of N-

based validation models for crops and organs (Table 2) are in agreement

with results obtained for a wide range of grain (Nicolardot, Recous, and

Mary 2001), oil crops (Trinsoutrot et al. 2002), and plants sampled from

natural habitats (Cortez et al. 2007).

Validation models based on all biochemical constituents were crop-

specific (Table 3); their R2 and C/N ratios were inversely related (r 5

20.98, p , 0.05, n 5 5), suggesting that small C/N ratios can be predicted

more accurately than large ones. This finding is supported indirectly by

the substantially smaller RMSE value for leaves (7.7), which have a

smaller C/N ratio than roots (24.9), in modeling mineralization of C and

N from residues of diverse plants (Abiven et al. 2005). Validation models

for C/N ratio in roots (Table 3) confirm the close biochemical relation-

ship between stems and roots (Poorter and Villar 1997). Biochemical

composition of stems alone explained 58% of variation in C/N estimates

in roots, notwithstanding C/N differences among crops as implied by the

small R2 value (28.0) when C/N in stems was used to predict C/N in roots,

and by the results of C/N mean separation among organs in each crop

(Figures 1–5). In addition, we calculated ratios of concentrations of

biochemicals in stems and roots relative to those of leaves for the same

crops (Johnson, Barbour, and Weyers 2007) and found that shoots/leaves

ratios of glucose, fructose, cellulose, hemicellulose, and acid-insoluble

lignin, as well as roots/leaves ratios of sucrose, cellulose, hemicellulose,
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and acid-insoluble lignin, were larger than and significantly (p , 0.05)

different from 1.0. However, the remaining shoots/leaves and roots/leaves

ratios of starch and acid-soluble lignin were less than and significantly

(p , 0.05) different from 1.0, whereas the shoots/leaves and roots/leaves

C/N ratios were significantly (p , 0.05) different from 1 (3.0 and 1.9,

respectively).

Covariation in biochemical composition and its impact on C/N ratio

estimates (Figures 1–5) may reflect inherent differences between these

crop plants; however, it may be environmentally induced (Poorter and

Villar 1997) or impacted by management (Carpenter-Boggs et al. 2000;

Dubeux et al. 2006). Differences in C/N ratios between stems and roots,

although significant except for alfalfa, were small, especially when

compared with those of leaves. This finding supports Poorter and Villar’s

(1997) suggestion to combine stems and roots for biochemical analyses if

time and resources are limited.

The different patterns of covariation among groups of biochemicals

and their association with C/N ratios (Figures 1–5) are dependent on

which biochemicals represented most of total C in each crop or plant

organ as suggested by Jensen et al. (2005) and are supported by the large

and significant variance components due to crops and organs within

crops (Johnson, Barbour, and Weyers 2007). Acid-insoluble and acid-

soluble lignins, representing most of total C, invariably covaried in all

crops; the first with strong association with stems and roots, the second

with leaves. Covariation of cellulose and hemicellulose was less intense,

and both biochemicals were strongly associated with stems and roots.

Covariation of soluble sugars and starch displayed no unique pattern.

Biochemicals representing most of total C display highly significant,

negative correlation coefficients (Poorter and Villar 1997; Jensen et al.

2005).

There was no significant overfitting during the training phase of the

ANN as indicated by the R2 values for C/N and RMSE (92.0 and 88.0,

respectively). These values indicate that ANN was slightly better in

predicting C/N than RMSE in this data set. However, the respective R2

values for the validation models (68.0 and 64.0) may reflect the relatively

small data set available for validation (StatSoft Inc. 2007). Sensitivity

analyses (Figure 6) suggest that biochemicals, where most plant C is

assimilated (e.g., cellulose, hemicellulose, acid-insoluble lignin, and acid-

soluble lignin), were dominant in and may inflate the estimation of

predicting C/N ratio and the accuracy of this prediction (Figure 7). This

finding is supported by the findings of Jensen et al. (2005), who showed,

for example, that plant samples with less than 200 mg of cellulose and

hemicellulose (i.e., holocellulose) C g21 all had low C/N ratios (between 7

and 23) and that the overall correlation between holocellulose C and total

C/N ratio was significant (0.67). However, these researchers showed that
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residue samples with more than 200 mg holocellulose C g21 had highly

varying and skewed C/N ratios (18–227). Another supporting statistical

evidence was presented by Poorter and Valler (1997), who concluded that

C/N ratio estimates for 24 herbaceous species were strongly associated

with large values of total structural carbohydrates in stems and roots and

with large values of total nonstructural carbohydrates in leaves.

CONCLUSIONS

We developed predictive models that can reliably estimate C/N ratios in

stems, leaves, and roots of five diverse crops characterized by large

variation in eight biochemical constituents, only three to five of which
were adequate to fully discriminate among their organs. Sensitivity

analyses identified which statistical moments (e.g., maximum, standard

deviation), other than mean values, of these biochemical constituents

have the largest impact on estimating C/N ratios and on the reliability of

these estimates. Notwithstanding the inconsistent and variable relation-

ships between biochemical constituents and C/N ratios of stems, roots,

and leaves of the five crops, stems, on a multivariate scale, were closer to

roots than to leaves. Results of this study provide insights into the
interrelationships among biochemical composition and C/N ratios

necessary for agronomists and farmers to predict the fertilizing potential

of crop residues and to design more diverse and viable crop rotations.
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